Description
Writes the custom macro variable specified by "datano_s", "datano_e". The data must be stored in "IODBMR" with signed binary format.
The kind of custom macro variable is as follows. The local variable cannot be written.
- Common variable (#100,..,#999) See the description of cnc_rdmacroinfo function about the available range of common variables.
It is possible to exchange the type of macro variable by cnc_setmactype function.
- decimal form floating-point type (data format=M*10**(-E))
- binary form floating-point type (data format=M*2**(-E))
mcr_val | : | value of variable(=M) 4-byte binary data with sign (available range:999999999,..,-999999999) |
dec_val | : | number of places of decimals(=E) 2-byte binary data with sign (available range:-128,..,127) |
mcr_val | : | numerical part of variable(=M) 4-byte binary data with sign (available range:No limitation) |
dec_val | : | exponent part of variable(=E) 2-byte binary data with sign (available range:-128,..,127) |
The value of an undefined variable is called "vacant", and it is expressed as follows both at decimal form floating-point type and at binary form floating-point type.
mcr_val = 0
dec_val = -1
See "OPERATOR'S MANUAL" of CNC for details of the custom macro variable.
Universal Fanuc Driver
Fanuc Focas Library CD
Declaration
Arguments
Specify the library handle. See "Library handle" for details.
Specify the data block length (size of IODBMR structure).
8+8*(Number of custom macro variable)
IODBMR
N : Number of custom macro variable
Pointer to the IODBMR structure including the custom macro variable. The IODBMR structure is as follows.
typedef struct iodbmr {
short datano_s; /* start custom macro variable number*/
short dummy; /* (not used) */
short datano_e; /* end custom macro variable number */
struct {
long mcr_val; /* value of custom macro var. */
short dec_val; /* number of places of decimals*/
} data[N]; /* N : number of variable */
} IODBMR;
- datano_s
- Specify the start custom macro variable number.
- datano_e
- Specify the end custom macro variable number.
- mcr_val
- Specify the value of variable/numerical part of variable.
- dec_val
- Specify the number of places of decimals/exponent part of variable.
Return
EW_OK is returned on successful completion, otherwise any value except EW_OK is returned.
The major error codes are as follows.
Return code | Meaning/Error handling |
---|---|
(2) |
Size of IODBMR structure(length) is wrong. |
(3) |
Custom macro variable number(datano_s, datano_e) is wrong. |
(5) |
Value of custom macro variable(mcr_val, dec_val) is out of available range. |
(6) |
This function needs the custom macro option. |
(7) |
The variable is read-only. |
As for the other return codes or the details, see "Return status of Data window function"
CNC option
This function need the following CNC option.
- Series 15/15i, 30i/31i/32i, 0i-D, PMi-A Custom macro
- Series 16/18/21, 16i/18i/21i, 0i-A/B/C, Power Mate i Custom macro B
And this function is related to the following CNC option.
- Series 15 Custom macro common variable 200 sets
- Series 15i Custom macro common variable 900 sets
- Series 16/18/21, 16i/18i/21i, 0i-A/B/C, Power Mate i, PMi-A Custom macro common variable extension
- Series 0i-F Embedded macro
- Series 30i/31i/32i Custom macro common variable extension
Custom macro common variable 300 sets
Custom macro common variable 600 sets
Embedded macro
For HSSB connection,
For Ethernet connection,
The Ethernet function and the extended driver/library function are necessary. However, in case of Series 16i/18i/21i-B, 0i-B/C/D/F, Series 30i and PMi-A, the required CNC option is as follows. When Embedded Ethernet is used,above two optional functions are not required.
When Ethernet board is used,
- only Ethernet function is required.
CNC parameter
This function is related to the following CNC parameter.
See the manual of CNC parameter for details.
CNC mode
This function can be used in any CNC mode.
Available CNC
0i-A | 0i-B/C(Note) | 0i-D | 0i-F | 15 | 15i | 16 | 18 | 21 | 16i-A | 18i-A | 21i-A | 16i-B | 18i-B | 21i-B | 30i-A | 30i-B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M (Machining) | |||||||||||||||||
T (Turning) | - | ||||||||||||||||
LC (Loader) | - | - | - | - | - | - | - | - |
0i-D | 0i-F | 16i | 18i | 30i-A | 30i-B | |
---|---|---|---|---|---|---|
P (Punch press) | - | |||||
L (Laser) | - | - | - | - | ||
W (Wire) | - | - |
Power Mate i-D | |
Power Mate i-H | |
Power Motion i-A | O |
"O" | : | Both Ethernet and HSSB | |
"E" | : | Ethernet | |
"H" | : | HSSB | |
"X" | : | Cannot be used | |
"-" | : | None |
Note) 0i-C does not support the HSSB function.
See Also
cnc_rdmacro cnc_wrmacro cnc_rdmacror cnc_rdmacror2 cnc_wrmacror2 cnc_rdmacroinfo cnc_getmactype cnc_setmactype
Example(C Language)
The following program writes the specified values into the custom macro
variables within the specified range.
#include "fwlib32.h"
/* start is start variable number to be written. */
/* value is array of value to be written. */
/* number is number of variable. */
short example( short start, long *value, short number )
{
IODBMR *macror ;
short ret, idx ;
macror = (IODBMR *)malloc( 8+8*number ) ;
macror->datano_s = start ;
macror->datano_e = start + number - 1 ;
for ( idx = 0 ; idx < number ; idx++ ) {
macror->data[idx].mcr_val = value[idx] ;
macror->data[idx].dec_val = 0 ;
}
ret = cnc_wrmacror( h, 8+8*number, macror ) ;
free( macror ) ;
return ( ret ) ;
}
Example(C#)
The following program writes the specified values into the custom macro
variables within the specified range.
class example
{
/* start is start variable number to be written. */
/* value is array of value to be written. */
/* number is number of variable. */
public short sample(short start, int[] value, short number)
{
Focas1.IODBMR mcrHead = new Focas1.IODBMR();
Focas1.IODBMR_data mcrData = new Focas1.IODBMR_data();
short ret, idx;
byte[] bytes = new byte[8 + 8 * number];
IntPtr ptrHead = Marshal.AllocCoTaskMem(Marshal.SizeOf(mcrHead));
IntPtr ptrData = Marshal.AllocCoTaskMem(Marshal.SizeOf(mcrData));
mcrHead.datano_s = start;
mcrHead.datano_e = (short)(start + number - 1);
Marshal.StructureToPtr(mcrHead, ptrHead, false);
Marshal.Copy(ptrHead, bytes, 0, 8);
for (idx = 0; idx < number; idx++)
{
mcrData.mcr_val = value[idx];
mcrData.dec_val = 0;
int pos = 8 + idx * Marshal.SizeOf(mcrData);
Marshal.StructureToPtr(mcrData, ptrData, false);
Marshal.Copy(ptrData, bytes, pos, Marshal.SizeOf(mcrData));
}
ret = Focas1.cnc_wrmacror(h, (short)(8 + 8 * number), bytes);
Marshal.FreeCoTaskMem(ptrHead);
Marshal.FreeCoTaskMem(ptrData);
return (ret);
}
}